skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hernandez, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Cough detection can provide an important marker to monitor chronic respiratory conditions. However, manual techniques which require human expertise to count coughs are both expensive and time-consuming. Recent Automatic Cough Detection Algorithms (ACDAs) have shown promise to meet clinical monitoring requirements, but only in recent years they have made their way to non-clinical settings due to the required portability of sensing technologies and the extended duration of data recording. More precisely, these ACDAs operate at high sampling frequencies, which leads to high power consumption and computing requirements, making these difficult to implement on a wearable device. Additionally, reproducibility of their performance is essential. Unfortunately, as the majority of ACDAs were developed using private clinical data, it is difficult to reproduce their results. We, hereby, present an ACDA that meets clinical monitoring requirements and reliably operates at a low sampling frequency. This ACDA is implemented using a convolutional neural network (CNN), and publicly available data. It achieves a sensitivity of 92.7%, a specificity of 92.3%, and an accuracy of 92.5% using a sampling frequency of just 750 Hz. We also show that a low sampling frequency allows us to preserve patients’ privacy by obfuscating their speech, and we analyze the trade-off between speech obfuscation for privacy and cough detection accuracy. Clinical relevance—This paper presents a new cough detection technique and preliminary analysis on the trade-off between detection accuracy and obfuscation of speech for privacy. These findings indicate that, using a publicly available dataset, we can sample signals at 750 Hz while still maintaining a sensitivity above 90%, suggested to be sufficient for clinical monitoring [1]. 
    more » « less
  3. null (Ed.)
    Multi-modal wearable sensors monitoring physiology and environment simultaneously would offer a great promise to manage respiratory health, especially for asthmatic patients. In this study, we present a preliminary investigation of the correlation between ozone exposure, heart rate, heart rate variability, and lung function. As the first step, we tested the effect of low-level ozone exposure in a sample size of four healthy individuals. Test subjects underwent controlled exposure from 0.06 to 0.08 ppm of ozone and filtered air on two separate exposure days. Our results indicate an increment in mean heart rate in three out of four test subjects when exposed to ozone. We have also observed that changes in mean heart rate has a positive correlation with changes in lung function and a negative correlation with changes in neutrophil count. These results provide a baseline understanding of healthy subjects as a control group. 
    more » « less
  4. Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026